
m

w

r
!

=

I ASSEMBLY SEQUENCE
PLANNING

L

u

/333

5

By:

A.C. Sanderson
H. Zhang

L.S. Homen de Mello

z

m

m Department of Electrical, Computer and Systems Engineering
Department of Mechanical Engineering, Aeronautical

Engineering & Mechanics
Rensselaer Polytechnic Institute

Troy, New York 12180-3590

L=

August 1989

w

CIRSSE Document #36

L

w

_-i
w

ASSEMBLY SEQUENCE PLANNING

amla .
Arthur C. Sanderson and Hui Zhang

Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute,

Troy, NY 12180

Luiz S. Homem de Mello

Jet Propulsion Laboratories

California Institute of Technology

Pasadena, CA 91109

Manuscript prepared for A! Magazine: Special Issue on Assembly

Planning

U

August 26, 1989

i

w

ASSEMBLY SEQUENCE PLANNING

Arthur C. Sanderson and Hui Zhang

Electrical, Computer, and Systems Engineering Department

Rensselaer Polytechnic Institute

Troy, NY 12180

and

Luiz S. Homem de Mello

Jet Propulsion Laboratories

California Institute of Technology

Pasadena, CA 91109

ABSTRACT

The sequence of mating operations which can be carried out to assemble a group of

parts is constrained by the geometric and mechanical properties of the parts, their assembled

configuration, and the stability of the resulting subassemblies. An approach to representation

and reasoning about these sequences is described here, and leads to several alternative explicit

and implicit plan representations. The PLEIDEAS system is intended to provide an interactive

software environment for designers to evaluate alternative systems and product designs through

their impact on the feasibility and complexity of the resulting assembIy sequences.

1. Introduction

Assembly plays a fundamental role in the manufacturing of most products. Parts which have

been individually formed or machined to meet designed specifications are assembled together into

a configuration which achieves the functions of the final product or mechanism. The economic

importance of assembly as a manufacturing process has led to extensive efforts to improve the

efficiency and cost effectiveness of assembly operations. In recent years, the use of programmable

and flexible automation has enabled the partial or complete automation of assembly of products

in smaller volumes and with more rapid product changeover and model transition. Artificial

Intelligence plays an increasingly key role in such flexible automation systems. Artificial

Intelligence tools facilitate reasoning about geometry, mechanics, and operations for assembly

sequence planning.

w

W

m

M

I

=

L2

==

= =

= :

In practice, manual labor, fixed automation, and flexible automation are often combined

in modem manufacturing systems in order to take advantage of cost and reliability trade-offs.

Decisions regarding alternative assembly manufacturing technologies, tools for assembly man-

ufacturing system design, and methods for assembly system implementation are key challenges

which currently face production engineers. More systematic approaches to the analysis, design,

and planning of these assembly systems are needed in order to enhance theft- performance and

to enable their cost-effective implementation. The work described in this paper focuses on the

representation of assembly sequence plans and the development of assembly sequence planning

tools which form the basis for automated and interactive assembly systems design methods.

The PLEIDEAS system, or PLanning Environment for Integrated Design of Assembly Systems,

described here, is an effort to develop such a set of software tools.

While assembly has important applications in manufacturing, the assembly process itself has

attracted scientific interest as an example of intelligent robotic manipulation. The mating of two

parts with complex geometries typically requires the integration of sensory and motor control

information with an internal representation of parts, geometries and relationships. Humans

carry out these manipulation tasks using well-practiced skills of integration of motor control

and sensory interpretation with stored models of geometry. The replication of these skills in

automated robotic systems has proven to be extremely difficult. Fundamental issues in robotics,

control theory, pattern recognition, and artificial intelligence are posed by this complex task. A

number of generic assembly problems in manipulation - "put the peg in the hole" -, sensing

- "find the part in the bin"- , and planning - "put block A on block B"-- have evolved as

classical challenges in the scientific literature and means to evaluate and compare approaches

and algorithms. Assembly sequence planning may also be thought of as such a generic scientific

problem in which the fundamental properties of assembly relations, geometries, and operations

are used to guide the search for correct, complete, optimal, or desirable sequences.

Blocks world may be thought of as a simple assembly planning environment. A goal state

in blocks world specifies the contacts between a set of parts, and the PUTON(A,B) operation

may be thought of as a mating operation which requires geometric access to the mating surface

as well as stability of the resulting configuration. However, many of the domain independent

approaches [1-5] to planning in blocks world do not map well into the more generalized assembly

problem. The use of a propositional representation for states and subgoals, such as in STRIPS

[1], has clear limitations when faced with the more generalized geometries and mechanisms

incorporated in product assemblies. An alternative approach to decomposition of the planning

probIem is needed. While the representation of state is more complex than in blocks world,

there are domain-specific ordering constraints for assembly which may be used to simplify the

representation of plans. In this paper we will describe the use of the AND/OR graph, directed

graph, and precedence relations for assembly sequence plan representation.

Assembly sequence planning is part of a hierarchy of steps in assembly system design for

manual, fixed automation, or programmable automation systems. One such hierarchy of design

and implementation for a programmable assembly system is shown in Figure 1. In this view,

2

w

L_

=

v

/ ASSEMBLY TASK DECOMPOSTION _ PRODUCT

TASK PLANNING

TASK-LEVEL

PROGRAMMING

TASK SEQUENCE PLANNING

RESOURCE ASSIGNMENT _ RESOURCES

/ CONTROL STRUCTURE _ ARCHITECTURE
\

TASK SCHEDULING

MOTION PLANNING

REAL-TIME MOTION CONTROL

Figure 1 Hierarchy of planning processes for assembly system design and implementation.

task level planning of the system is carried out based on a description of the product and its

parts, a description of the system and its resources such as robots, grippers, fixtures, or sensors,

and a description of the coordination architecture including computing and communications

capabilities. The resulting task-level plan describes the decomposition of the assembly task, the

assignment of assembly sub-tasks to system resources, and a model for the coordination and

scheduling of systems resources based on architectural features. The implementation of the task

level plan is carried out using a task-level programming approach in which the detailed control

of paths and trajectories, fine motion, grasping, sensing, and interaction forces, is specified.

Real time execution utifizes this planning structure as a framework to provide efficient and

reliable performance. Developing such a planning and control framework which can successfully

cope with the uncertainties in design specification and execution parameters is a major goal in

assembly planning research.

This paper is concerned with planning sequences of assembly operations which satisfy

conditions of feasibility and yield states which are stable. The paper provides an overview of an

approach and examples of results. Additional details may be found in the previous publications

[6--14]. Section 2 describes the relational graph structure which we utilize as the basis for

assembly representation, and abstracts the problem of task decomposition to identifying the cut

sets of the graph of connections of the product. Section 3 describes alternative assembly sequence

representations, and illustrates some advantages and properties of the AND/OR graph. Section

4 defines two types of precedence relations which may be generated from the AND/OR graph.

These precedence relations may be simplified when independence properties of the assemblies

hold, and, in addition, the real-time properties of precedence relations may be guaranteed under

certain conditions. Section 5 discusses the issue of evaluation functions for assembly sequence

plans. Section 6 summarizes the PLEIDEAS system which is an approach to developing an

environment for assembly system planning. Section 7 presents conclusions and directions of

continuing work.

7- Z
W

--I

B

W

2. Assembly Sequence Planning.

An assembly product description consists of the geometric description of each of the

individual parts, their geometric tolerances, and the configuration in which the parts fit together

to form the final product. In practice, such a description is often incomplete or inexact, and relies

strongly on human experience and intuition for the full interpretation of this description. For

purposes here, we will assume that an explicit description of the parts geometry and the assembled

configurations is given or derived. Our approach to assembly representation is strongly influenced

by previous experience with relational models [15,16,17]. We do not currently consider tolerances

for planning purposes, although the geometric modeling system which we use incorporates them

(see Section 6) and provides access for use in the planning procedures. In addition to the

geometric configuration, most assemblies utilize attachments which apply physical forces to

constrain the relative motion among parts and stabilize the final assembly. While attachments

such as screws and clips are represented geometrically in the assembly description, it is often

impossible to infer from their geometric description what the physical role of these parts may

be as an attachment for the assembly. We therefore add the attachment description interactively

to the relational model.

In our work, three levels of description are utilized for assembly product representation. An

example for a simple product is shown in Figure 2. (1). Figure 2a illustrates a complete CAD

description of individual parts geometries as output by the CATIA (IBM Corp.) system. (2).

From the CAD-based description of parts, we derive a relational graph model of the resulting

assembly as shown in Figure 2b. This relational graph extraction is based on an object-oriented

geometric modeling system, GEOS (see Section 6), which provides an explicit representation of

parts and contacting surfaces in the assembly. We interactively add attachment entities in order

to explicitly describe constraints on the degrees of freedom of contacts within the structure. In

this description each attachment has an agent and a contact, where each contact has its degrees of

freedom constrained when the attachment agent is present. These relationships directly influence

the feasible assembly sequences since an attachment agent must often be removed prior to

removal of a part which breaks a contact. (3). A simplified relational structure called the graph

of connections is shown in Figure 2c. While the relational graph contains specific properties and

attributes associated with each of the entities, the graph of connections is purely the relational

structure which defines the parts and connections. The three levels of product description shown

in Figure 2 are all necessary for assembly sequence planning, and this hierarchical organization

facilitates the planning tasks.

There are ten different feasible sequences which may be used to assemble the product shown

in Figure 2. These sequences are listed in Figure 3. From a planning perspective, each of these

sequences is a series of actions which satisfies the preconditions for each action and which leads

to the goal state. In assembly sequence planning, the initial state is always that state in which

no parts are interconnected and the goal state is always that in which all parts are interconnected

in the final unique configuration. The intermediate states of the system consists of subsets of

mutually interconnected parts called sub-assemblies. We will assume for this discussion that the

wm,

m

r

w

L

geometric configuration of a sub-assembly is uniquely specified by its constituent parts, that is,

there is only one way for a given subset of parts to fit together. For these examples therefore,

if we assemble a cylinder with a piston, we would uniquely specify the final position of the

piston and assume that it would not have to occupy multiple discrete states in order to enable

successful assembly.

Assembly Task Feasibility Predicates

An assembly action mates two parts or sub-assemblies to form a new sub-assembly. (For

the current discussion we will assume that only two, and not more, sub-assemblies are joined

at a given time.) In assembly, the preconditions for such an action may be thought of as the

feasibility conditions for the execution of the operation and the acceptability of the resulting

state. Preconditions on the feasibility of operations may be broken down into several different

categories:

1. Resource independent feasibility conditions: Independent of the specific robots, grippers,

or fixtures which are utilized in the assembly, there are geometric constraints among the parts

which restrict the order in which operations can be carried out. These restrictions include: a)

Local geometric feasibility - Is local or incremental translation of the part feasible from its final

assembled state? This question may be answered for translational motion using only surface

normal information which is stored in the relational graph. See [13] for details, b) Global

geometric feasibility - Is there an unobstructed path from some remote position to the final

assembled state given the geometric obstructions posed by other parts which are present in

the assembly state? This problem is related to the general path planning problem [18], but only

requires determination of the existence of a path, and not necessarily the specification of the path.

2. Resource dependent feasibility conditions: a) Geometric feasibility - Is there an unob-

structed path for mating of parts given the geometry of the parts plus the geometry of robots,

grippers, and fixtures which may be utilized in the operation? B) Attachment feasibility - Can

appropriate forces be exerted by available tools in order to attach parts as required by the mating

operation? c) Tool availability - Is there an appropriate robot, gripper, or fixture available in

order to carry out a particular task to meet geometric and attachment constraints?

While such feasibility conditions might be examined simultaneously, it is often more efficient

to structure the planning approach hierarchically. As suggested by Figure 1, we can examine

assembly sequence plans which are feasible from a resource independent point of view, and

these plans subsume all of the feasible plans which incorporate resource dependencies. The

resource independent plan reduces the search space for the resource dependent planning. In

addition, a number of heuristics related to the complexity of operations and the desirability of

states may be added at this stage to further reduce the search space. Figure 3 shows a set of

assembly sequences for the simplified flashlight product which are alI feasible from a resource

independent criterion. An example of an infeasible sequence for this product would be sequence

A-C-B. In this sequence the cap and handle are attached to the receptacle before the stick is

placed inside. It becomes geometrically infeasible to insert the stick into the receptacle when

both ends are attached. Such a sequence should be rejected early in the planning process and

w

w

J

w

CAP STICK RECEPTACLE HANDLE

,..._ P+_,_:co"_,++ /

, i J'+""

..., ." a • *_(lO 0 0110 I 011 .,_.J us, ((0 0 O) (0 1 0)) •

C 4

Figure 2 Three levels of representation of assembly product: (a) Solid model

of parts, (b) Relational model of assembly, (c) Graph of connections of assembly.

not considered further. Another sequence such as B-A-C might be geometrically feasible, but

undesirable. In this case, the stick is inserted into the receptacle resulting in a sub-assembly state

which may require fixturing in order to keep the stick from sliding out. Such a state might be

detected and evaluated as undesirable by an appropriate heuristic. Resource dependent feasibility

w

L_

5

7
m

w

m

=

r

Cl)

Alibi

(_) (6)

r_

V

C'O

f

rACU[

B-
O)

_r

pu_c£1r_

_r

(8)

s'n_

(4)

i

I._..cl

(9)"

(mkEC_lIr _O,.J[

¢,_.4.CI

(I0)

Figure 3 Feasible assembly sequences for the product shown in Figure 2.

constraints could further limit the set of sequences shown in Figure 3. If there were no gripper

available to pick up the stick or no mechanism available to screw in the handle then there might

be no remaining feasible sequences.

In addition to task feasibility conditions, we need to consider state feasibility conditions.

Again, several resource independent and resource dependent conditions may come into play.

These include:

1. Stability - Is there one pose of the sub-assembly for which the configuration is stable? This

is a very difficult problem in general [19], is strongly influenced by the types of friction and

surface interaction assumptions which are made.

2. Rigidity - Is the sub-assembly stable for all poses of the sub-assembly?

Each of these criteria may be examined under different assumptions:

1. Resource independent constraints: a) No gravity or external forces - in this case all sub-

assemblies are stable and rigid, b) Gravity or other external forces - in this case stability may

strongly depend upon orientation of the sub-assembly, and rigidity often requires attachment

of all parts.

2. Resource dependent constraints: Fixtures or grippers may be added to the configuration in

order to impose stability or rigidity on a sub-assembly during the assembly process.

7

m

w

L

U_

u

The assembly sequences presented in Figure 3 all have at least one stable pose for each state

in the presence of gravity, although the pose might be changed during the sequence to insure

stability and also enable geometric feasibility. In general, the assessment of the stability of a

state would also require a description of the frictional forces which arise.

Assembly Sequence Planning

In our work, we provide a framework for assembly sequence planning in which many

different feasibility criteria might be incorporated. The same approach to plan generation, plan

representation, and plan evaluation may be used for different feasibility conditions. As discussed

above, the resource independent plans subsume the resource dependent plans and therefore

simplify the overall planning process. In the experiments described here, we have implemented

two feasibility criteria for the generation of assembly sequences: 1) Resource independent local

geometric feasibility, and 2) Attachment feasibility based on the assumption that attachment

tools are available, and that breaking attached contacts is infeasible unless the attachment agent

is removed. These two feasibility criteria are sufficiently interesting and complex to illustrate

many of the important problems which occur in assembly sequence planning.

The problem of generating feasible assembly sequences for a product may be transformed

into the problem of generating disassembly sequences for the same product. For many problems

of interest this transformation reduces the branching factor of the search space since there

are often many more options and dead ends which occur in assembly than in disassembly.

This transformation of the problem is conceptual rather than physical. Assembly tasks are not

necessarily reversible in the physical sense, but we impose this reversibility from a conceptual

standpoint in order to plan correct sequences. This decomposition approach to assembly planning

maps nicely onto our relational model of the product, and leads to a recursive decomposition

of the task in which each decomposable subproblem is a proper subset of the original model.

In addition, as we will see in the next section, this decomposition approach lends itself to the

AND/OR graph representation of assembly sequences.

The basic planning strategy is to recursively enumerate the decompositions of the assembly

and to select those decompositions that are feasible by imposing a set of feasibility predicates.

The decompositions of the assembly are enumerated by the cut sets of the assembly's graph

of connections. The feasible operations and feasible states predicates are evaluated using the

relational model and the geometric parts models.

Assembly States

The assembly graph of connections can be represented by a simple undirected graph

(P,C) in which the parts P = {pl,p2,'",P_v} are the set of nodes, and the connections

C = {cl, c_.,..., cL} are the set of edges. A state of the assembly process is a configuration of

the parts at the beginning or at the end of an assembly task. The state of an assembly process

may be characterized either by the configuration of contacts which have been established or by

the partitions of the parts which are connected. In the first case, a state of the assembly process

may be represented by an L-dimensional binary vector x = [xl,x2,." ,XL] in which the ith

component of xi is true or false respectively if the ith connection is established in that state or

r =

i

= ,

= .

u

not. For example, if the first task of the assembly process for the example shown in Figure

2 is the joining of the cap to the receptacle, the second state of the assembly process can be

represented by [false, true, false, false, false].

Alternatively, an assembly state may be characterized by partitioning of parts into sub-

assemblies. For example, if the first task is the joining of the cap to the receptacle, the second state

of the assembly process can be represented by { {CAP, RECEPTACLE}, {STICK}, {HANDLE}

}. Given an assembly's graph of connections and one of the two representations of the assembly

state, it is straightforward to obtain the other representation. It is also important to observe

that not all partitions and not all L-dimensional binary vectors can characterize a proper state

of the assembly. For example, for the assembly shown in Figure 2, the 5-dimensional binary

vector [true, true, false, false, false] does not correspond to a state because if connections cl and

c2 are established then c3 must also be established. A sub-assembly predicate sa is defined to

determine whether a subset of parts makes up a sub-assembly and, therefore, whether a given

binary vector is, in fact, a proper state vector of the assembly. In addition, we define a sub-

assembly's stability predicate st which determines whether a sub-assembly described by its set

of parts and connections is stable. While we have studied a sub-assembly's stability predicate

based on the stability of parts configuration subject to gravity and zero friction, many other

assumptions and analysis tools or heuristics might be implemented here. An assembly state

representation in which all sub-assemblies satisfy the stability predicate is said to be a stable

assembly state representation.

Assembly Tasks

Given two sub-assemblies characterized by their sets of parts 0i and 0./, we say that joining

Oi and Oj is an assembly task if the set 0_ = 0i U Oj characterizes a sub-assembly. Equivalently,

an assembly task can be characterized by the output sub-assembly and the set of connections that

are established by the task. In order for such a set of connections to represent an assembly task,

it must correspond to a cut set of the graph of connections of the task's output sub-assembly.

Conversely, each cut set of a sub-assembly's graph of connections corresponds to an assembly

task.

Each assembly task must be evaluated by the operations feasibility predicates described

above. An assembly task is said to be resource independent geometrically feasible if there is a

collision-free path to bring the two sub-assemblies into contact from a situation in which they

are far apart. We further decompose this geometric feasibility predicate gf into a local predicate

and a global predicate. The local predicate tests for the incremental motion of the designated

sub-assemblies, while the global predicate tests for the existence of a globaI collision-free path.

An assembly task is said to have attachment feasibility if it is feasible to establish the attachments

that act on the contacts between the two sub-assemblies. The attachment feasibility predicate

af evaluates this predicate based on the attachment description which is incorporated into the

relational model. A local geometric feasibility can be evaluated also using the contact attributes

and properties established in the relational model. Global geometric feasibility requires access to

the detailed parts descriptions which are referenced from the relational model to the parts models.

z

w

7

n

F

Again, the computation of these predicates may be approached in a variety of different ways.

They are extremely complex to compute in general, and incorporate many very challenging and

interesting problems in geometric and physical reasoning. As mentioned above, the experiments

described in this paper include a local geometric feasibility predicate and an attachment feasibility

predicate, in order to demonstrate the overall planning framework.

Our algorithm for the generation of assembly sequences utilizes an approach which enu-

merates the decompositions of the assembly and then selects those decompositions that are

feasible. As shown in the next section, this recursive decomposition results in the construction

of the AND/OR graph representation of assembIy plans. Figure 4 outlines the procedure GET-

FEASIBLE-DECOMPOSITIONS which takes as input the relational model of an assembly and

returns all feasible decompositions of that assembly. The procedure first generates the graph of

connections for the input assembly and computes the cut sets of this graph. The cut sets are enu-

merated by looking at all connected subgraphs having the cardinality of their set of nodes smaller

than or equal to half of the cardinality of the set of nodes in the whole graph. For each of these

subgraphs, the set of edges of the whole graph that have only one end in the subgraph defines

a cut set, if their removal leaves the whole graph with exactly two components. Each resulting

cut set corresponds to a decomposition of the graph. The procedure GET-DECOMPOSITION

finds that decomposition, and the procedure FEASIBILITY-TEST is used to check whether that

decomposition is feasible or not. Note that the procedure FEASIBILITY-TEST further breaks

down into a set of procedures which implements the individual operations feasibility predicates

and state feasibility predicates.

3. Assembly Sequence Representation

As described above, each assembly may have many different feasible assembly sequences.

Our first objective is to generate those sequences and represent them in an efficient manner.

Given an assembly that has N parts, an ordered set of N-1 assembly tasks rl re .-- r_v-1 is

an assembly sequence if there are no two tasks that have a common input sub-assembly, the

output sub-assembly of the last task is the whole assembly, and the input sub-assemblies to any

task is either a one-part sub-assembly or the output sub-assembly of a task that precedes. Such

an assembly sequence can also be characterized by an ordered sequence of states, in which the

state Sl is the state in which alI parts are separated, the state SN is the state in which all parts

are joined forming the whole assembly, any two consecutive states are such that only the two

input sub-assemblies of the task are in si and not in Si+l, and only the output sub-assembly of

task ri is in si+l and not in i. An assembly sequence is said to be feasible if all its assembly

tasks are feasible, and all its assembly states are feasible.

An assembly sequence therefore can be represented in several different ways: 1) An ordered

list of task representations. 2) An ordered list of binary vectors. 3) An ordered list of partitions

of the set of parts. 4) An ordered list of subsets of connections. For example, a feasible assembly

sequence for the product shown in Figure 2 could be represented as:

10

u

w

L

w

procedure GET-FEASIBLE-DECOMPOSITIONS(assembly)

feasible-decompositions _ Nit

graph _.- GET-GRAPH-OF-CONNECTIONS(assembly)

cut-sets _-- GET-CUT-SETS(graph)

while cut-seis is not empty do

bet_a loop1

next-cut-set _- FIRST(cut-sets)

cut-sets _ TAIL(cut-sets)

next.decomposition ,-- GET-DECOMPOSITION(next-cut-set)

if FEASIBILITY-TEST(next-decomposition)

then feasible-decompositions _ UNlON(feasible-decompositT"ons, LIST(next-decomposition))

end loopl

return feasible-decompositions

end procedure

W

= =

Figure 4 Procedure GET-FEASIBLE-DECOMPOSITIONS generates the feasible decompositions of the assembly.

A three-element list of task representations:

({ {CAP}, {RECEPTACLE} }

{ {CAP, RECEPTACLE} , {STICK} }

{{CAP, RECEPTACLE, STICK}, {HANDLE}})

A four-element list of 5--dimensional binary vectors:

([false, false, false, false,false]

[false,true, false, false, false]

[true,true,true, false, false]

[true,true,true,true,true])

II

• A four-element list of partitions of the set of parts:

({{CAP}, {RECEPTACLE}, {STICK},{HANDLE}}

{{CAP,RECEPTACLE},{STICK}, {HANDLE}}

{{CAP,RECEPTACLE, STICK}, {HANDLE}}

{{CAP,RECEPTACLE, STICK, HANDLE}})

u

u

w

= =

• A three-element list of sets of connections: ({c2}{c_,c3} {C4,C5}).

Since each assembly sequence can be represented by ordered lists, it is possible to represent

the set of all assembly sequences by a set of lists. While this set of lists may represent a complete

and correct description of all feasible assembly sequences, it is not necessarily the most compact

or most useful representation of those sequences. In particular, since many assembly sequences

share common subsequences, and common states, attempts have been made to create more

compact representations that can encompass all feasible assembly sequences. We have utilized

the AND/OR graph representation of assembly sequences as a basis for these representations.

We have developed an algorithm for the generation of the AND/OR graph and subsequent

algorithms which generate equivalent, complete and correct representations of the directed graph

and precedence relations.

The nodes in this AND/OR graph representation of assembly sequences are the subsets of P

that characterize stable sub-assemblies. The hyperarcs correspond to the feasible assembly tasks.

Each hyperarc is an ordered pair in which the first element is a node that corresponds to a stable

sub-assembly 0k, the second element is a set of two nodes, {Oi,O.i} such that Ok = 0i U 0i,

and the assembly task characterized by Oi and Oj is feasible. Each hyperarc is associated

with a decomposition of the sub-assembly that corresponds to its first element and can also

be characterized by this sub-assembly and the subset of all its connections that are not in the

graphs of connections of the sub-assemblies in the hyperarc's second element. This subset of

connections associated to a hyperarc corresponds to a cutset in the graph of connections of the

sub-assembly in the hyperarc's first element. This AND�OR graph can be formally defined as

follows:

Definition: The AND/OR graph of feasible assembly sequences of an assem-

bly whose set of parts is P = {p_,p2,"" ,PN} is the AND/OR graph (Sp, De)

in which

Sp = {0 e n(P) l sa(O) A st(0)}

is the set of stable subassemblies, and

De = {(0k, {8i,Oj})l[Oi,Oj,Sk 6 Sp] A [U ({0i,0j}) : 0k]

A[af ({Oi, Oj})l A [gf ({8i,Oi})]}

is the set of feasible assembly tasks. The notation I'I(P) is used to represent the

set of all subsets of P

12

w

!

w

u

/
¢

Figure 5 AND/OR graph of the product shown in Figure 2.

As an example, Figure 5 shows the AND/OR graph for the feasible sequences for the

assembly shown in Figure 2. This AND/OR graph representation is complete and correct in that

it includes all possible feasible assembly sequences, and also does not include any infeasible

assembly sequences. A given assembly sequence can be defined as a feasible assembly tree

within the AND/OR graph.

The algorithm GENERATE-AND/OR-GRAPH takes the relational model of an assem-

bly and returns the AND/OR graph representation of all assembly sequences for that assem-

bly. The nodes in the AND/OR graph returned are pointers to relational models of sub-

assemblies. The algorithm is not reproduced here due to space limitations, but it uses procedure

GET-DECOMPOSITIONS to generate all decompositions of the relational models and keeps

track of lists of pointers to determine whether specific sub-assemblies have previously been

generated or not. These procedures may further be made more efficient by linking together the

evaluation of feasibility tests between different decompositions to avoid duplication of the com-

putational work. An analysis of the completeness, correctness and complexity of the AND/OR

graph generation algorithm is discussed in [12]

Given an assembly whose graph of connections is (t9, C), a directed graph can also be used to

represent the set of all feasible assembly sequences. The nodes in this directed graph correspond

to stable state partitions of the set P. These are the partitions (9 of P such that if 0 C (9 then

0 is a stable sub-assembly of P. The edges in this directed graph are ordered pairs of nodes.

For any edge, there are only two subsets, Oi and Oj, in the state partition corresponding to the

first node that are not in the state node corresponding to the second node. Therefore, each edge

corresponds to an assembly task. If all assembly tasks are feasible then the graph is referred to as

the directed graph of feasible assembly sequences. Figure 7 shows the directed graph of feasible

assembly sequences for the assembly shown in Figure 2. A path in the directed graph of feasible

13

i

w

w

w

_ _

w

w

w

Figure 6 Directed graph of the product shown in Figure 2.

assembly sequences corresponds to a feasible assembly sequence for the assembly P. In such

a path, the ordered sequence of edges corresponds to the ordered sequence of tasks, while the

ordered sequence of nodes corresponds to the ordered sequence of states of the assembly process.

The equivalence of the directed graph and the AND/OR graph as complete and correct represen-

tations of feasible assembly sequences has been proven elsewhere [12]. The relative complexity

of the two representations in terms of the number of nodes in the graphs has also been addressed

in [12]. In that analysis, for strongly connected assemblies, the AND/OR graph had fewer nodes

for all assemblies larger than N = 4, and at N = 10 it had fewer nodes by more than two or-

ders of magnitude. While the list of sequences, the directed graph, and the AND/OR graph

all represent complete sets of sequences, the AND/OR graph has advantages in the efficiency

of its representation. This efficiency may be viewed as a space/time tradeoff, such that, given

a fixed amount of space allocated for representation storage, the AND/OR graph will tend to

represent more feasible sequences and therefore may lead to more optimal performance, shorter

time, solution. An example of the use of the AND/OR graph representation for the opportunistic

scheduling of robotic assembly tasks is shown in [12].

4. Precedence Relations

It has been observed that many assembly problems have inherent ordering constraints which

dominate the selection of feasible sequences for assembly systems. For the example in Figure

2, "The stick must be in the receptacle before both ends are attached" is a generalization on

ordering which, in itself, is sufficient to distinguish all the feasible and infeasible sequences.

Intuitive precedence relations of this type have been used by assembly designers for many years.

The work of Bourjault [20] and DeFazio and Whitney [21] and Lui [22] has attempted to capture

14

w

w

2= ±

o

this intuitive knowledge by formalized sets of interactive questions provided to the designer. In

our work, we have shown how to derive these sets of precedence relations directly from the

AND/OR graph, and therefore to be able to generate precedence relations automatically from

the design description.

In this section, we define two types of precedence relations: Type 1 - precedence relations

between the establishment of one connection and states of the assembly process, and Type 2

- precedence relations between the establishment of one connection and the establishment of

another connection of the assembly process. Both of these types of precedence relations result

in logical expressions on the occurrence of connections or states. They both may be generated

directly from the AND/OR graph and shown to be complete and correct descriptions of feasible

assembly sequences. We also introduce two independence properties of assemblies which permit

the simplification of these precedence relations. These independence properties in themselves

provide some interesting insight into the characteristics of assemblies and the complexity of

their resulting sequences.

Type 1 Precedence Relations: Connection-State

If we represent the states of the assembly process by L-dimensional binary vectors, then a set

of logical expressions can be used to encode the directed graph of feasible assembly sequences.

Let Ei = {xt, x2,..., xa} be the set of states from which the ith connection can be established

without precluding the completion of the assembly. The establishment condition (Bourjault,

[20]) for the ith connection is the logical function:

Ki L

F, (x) = = II'lk,,
k=l /=1

where the sum and the product are the logical operations OF! and AND respectively, and 7kl is

either the symbol xl if the l th component of xk is true, or the negation _ if the Ith component of

xk is false. Clearly, every element x_ of -qi = {xx,x_,... ,x3} is such that Fi(Xk) = true. It is

often possible to simplify the expression of Fi(xk) using the rules of Boolean algebra. The set of

establishment conditions is a correct and complete assembly sequences, and this set of conditions

can be obtained directly from the AND/OR graph as described in [14]. A complementary set

of conditions for the infeasible assembly states may be used as a basis for deriving the Type

1 precedence relations.

We will use the notation Ci--_S(x) to indicate that the establishment of the ith connection must

precede any state S of the assembly process for which the value of the logical function S(x) is true.

The argument of S(x) of the assembly process for which the value of the logical function S(x) is

the L-dimensional binary vector representation of the state s. We will use a compact notation for

logical combinations of precedence relations. For example, we will write ci + c3 --_ S (x) when

we mean [ci _ S (x)] V [ci _ S (x)]. An assembly sequence whose representation as an ordered

sequence of binary vectors is (Xl x2 ... xN) and whose representation as an ordered sequence

of subsets of connections is (71 72 • • - 7N-l) satisfies the precedence relationship ci-,S(x).

u

15

L

m

=

m

W

E

w

!

L ¸

Let g's be the set of assembly states that never occur in any feasible assembly sequence.

These include the unstable assembly states plus stable states from which the final state cannot be

reached plus the states that cannot be reached from the initial state. Let _x = {xl, x2, • .- , xj}

be the set of all L-dimensional binary vectors that represent the assembly states in _s. Every

element xj of 'I'x is such that the value of the logical function G(xj) is true where

K L

C(x) = a (Xl,X2,.-.,xL)= 1-1
k=l l=l

The sum and the product in this equation are the logical operations OR and AND, respectively,

and Ala is either the symbol xt if the I th component of xk is true, or the symbol 77 if the

l th component of xk is false. In many cases the expression G(x) can be simplified using the rules

of Boolean algebra. Allowing for simplifications, but keeping the logical function as a sum of

products, this equation can be rewritten as

j,

a(x) = (x)
j=l

where each term gj(x) is the product of a subset of {xl, x2,..., XL, xl, x2,"" ,'_-} that does

not include both xi and _'7 for any i. Each term gj(x) can further be rewritten grouping

all the nonnegated variables first and all the negated variables last, for example: gj (x) =

_a " Xb T, h • ,T,p • T,q Xz.

Any assembly sequence that includes a state that is in tI, s is an unfeasible assembly sequence.

Therefore a necessary condition for the feasibility of an assembly sequence whose representation

as an ordered list of binary vectors is @1,x2 xy) is such that G(xl) = G(x2) = ... = G(xy) =

false.

This condition is equivalent to gj(xi) =false for i = 1,2 ,N and forj = 1,2 ,J'. This

necessary condition is also sufficient if the assembly has the following property:

Property 1: Given any two states si and sj, not necessarily in the same

assembly sequence, let 7i and 7j be the sets of connections that are established

in assembly tasks ri and 7"j from si and sj respectively. If

(P, Ci)is the state's graph of connections associated to si,

(P, Cj}is the state's graph of connections associated to state sj,

7i C 3/j,

Ci C Cj, and

rj is geometrically and mechanically feasible,

then, ri is geometrically and mechanically feasible.

This property corresponds to the fact that if it is feasible to establish a set of connections

when many other connections have already been established, then it is also feasible to establish

fewer connections when fewer other connections have been established. Although many common

n

16

I t

x Y

BOX

u

+ L

i

m

u

Figure 7 Example of an assembly which violates Property 1. The cover of the box is a sliding mechanism, and

the blocks are placed on springs. When either X or Y, but not both, is present, the spring is not completely

compressed, the other block prevents the cover from sliding and Z cannot be inserted. Adding the other block to the

assembly compresses the spring, permits the cover to slide open, and Z may be inserted. Since insertion of Z is

feasible with X and Y present, but not with only X or Y individually present, the assembly violates Property I.

assemblies have this property, there are assemblies that don't have it. One may view Property

1 as a kind of independence property among connections. It assumes that no mechanisms are

present in the assembly such that when additional parts are added the geometric access for

assembly of parts is improved. Note that Property 1 does not guarantee that the resulting state

will be stable. In the Type 1 precedence relations, the state feasibility is checked explicitly

by enumerating unfeasible states, and therefore no prior assumptions are required. For Type 2

precedence relations, an additional independence property is required to guarantee state feasibility

of the resulting sequences. An example of an assembly which does not have Property 1 is

shown in Figure 8.

In [11,13] we showed that if (xl,x2 XN) is an ordered list of binary vectors that represents

an assembly sequence, the condition gj(xi) = false, i = 1,2 ,N is a requirement for a feasible

assembly sequence and also corresponds to a precedence relationship:

cp +Cq +... + Cz _ S(x)

where
/;

S(x)= 1-I A1 = { xtiflE {a,b,...,h}true otherwise
I=I

By applying this result to each of the J' terms on the right side of the equation , we

obtain J' precedence relationships. Given an assembly sequence, if it satisfies all J' precedence

relationships then it does not include any state in _s and therefore is feasible. Conversely, if the

17

m

u

m

m

w

m

assembly sequence does not include any state in _s and therefore it is a feasible assembly

sequence then it satisfies all precedence relationships. Therefore the set of J' precedence

relationships is a correct and complete representation of the set of all feasible assembly sequences.

This result is proven as a theorem in [12,14]. The following example illustrates the application

of this result. An algorithm for the generation of these Type 1 precedence relations from the

AND/OR graph is given in [14].

As an example of the generation of Type 1 precedence relations, consider the example shown

in Figure 2, which has Property 1. In this example, the infeasible states are

x = {[false, true, false, false, true], [true, false, false, true, false]}.

Therefore,

a (x) = a (zl, z:, z3.z4, zs) = z2 •z3" z4. z5 + zl • • z3. z4. zs.

The resulting precedence relations are:

C 1 "_ C3 nt- C4 -"4 X2 " X5,

C2 "q- C3 _ C5 ""+ Xl • X4

A simpler set of precedence relations can be obtained if, in addition, we set non-state vectors as

don't care conditions for the simplification. In this case, we obtain the precedence relations:

These sets of expressions are not unique, that is, other logically equivalent sets of precedence

relations can be obtained as simplifications of this set. All of these relations express our intuitive

understanding of the problem that the stick must be connected prior to closing of the receptacle,

and that the stick cannot be joined to the cap and handle without the receptacle already present.

Type 2 Precedence Relations: Connection-Connection

Type 2 precedence relations establish the occurrence of one connection prior to or simulta-

neously with the occurrence of another connection in the sequence. We use the notation ci<cj

to indicate that connection ci must precede connection cj, and we use the notation ci < cj to

indicate that connection ci must precede or be simultaneously with the establishment of con-

nection cj . Furthermore, we use a compact notation for logical combinations of precedence

relations: for example we will write ci < cj .ck to mean (ci < cj) A (ci < ck), and we will write

ci + cj < ck to mean (ci < ck) V (cj < ck). An assembly sequence whose representation as an

ordered sequence of binary vectors is (Xl,X2 XN), and whose representation as an ordered

sequence of subsets of connections is (V1 ")'2 • • • VN-1) satisfies the precedence relationship ci<cj

if ci E Va, cj E _[b, and a<b. Similarly, the sequence satisfies ci < cj if ci E 7a, cj E Vb,

and a < b. For example, for the assembly shown in Figure 2, the assembly sequence whose

representation as an ordered sequence of binary vectors is

18

m

u

=

m

r

m

!

([false, false, false, false, false]

[true, false, false, false, false]

[true, true, true, false, false]

[true, true, true, true, true] ,

and whose representation as an ordered sequence of subsets of connections is

({C1} {C2, C3} {C4,C5))

satisfies the precedence relationships c2 < c4 and c2 < c3 but does not satisfy the precedence

relationships c2 < c3 and c2 _< cl.

Each feasible assembly sequence of a given assembly can be uniquely characterized by

a logical expression consisting of the conjunction of precedence relationships between the

establishment of one connection and the establishment of another connection. Given an assembly

made up of N parts whose graph of connections is <P,C> let

{(_11")'21 "''"/(N-1)l), ("/12 "/22 ''' "_(N-1)2), "'" , (_IM_'2M "'" "/(N-1)M)}

be a set of M ordered sequences of subsets of connections that represent feasible assembly

sequences. Then a correct and complete set of logical expressions representing these sequences

is:
L M

i=1 j=l

where

Hij = I-[Aik with Aik = {
k=l

k=l

ck if ck E 7ij and I > i

true otherwise,

ck if ck E Tij and l < i
true otherwise.

While it is often possible to simplify this logical expression directly, there is another

interesting simplification which arises from the definition of a second independence property
of assemblies:

Property 2: Given any three states si,sj,sk, not necessarily in the same

assembly sequence, let 7i, 7j, 7k be the sets of connections that are established in

assembly tasks ri, 7-j, r k from si, sj, sk respectively. If

(P, Ci)is the state's graph of connections associated to si,

(P, C./)is the state's graph of connections associated to state s/,

<P, Ck)is the state's graph of connections associated to sk,

19

-- =

=

-: Z

m

u

m

'iC %i C %,

c, c_ ci c_ ck,
ri and vk are geometrically and mechanically feasible, and

si+_ and sk+l are feasible states

then, rj is geometrically and mechanically feasible, and sj+1 is a feasible state.

If Property 2 holds for an assembly, then the following simplified set of Type 2 precedence

relations holds:

i=l j=l

We can illustrate this property as follows. The assembly shown in Figure 2 has both

properties 1 and 2. Based on the set of assembly sequences shown in Figure 3, we can write

Type 2 precedence relations of the following form:

Cl <__C2C3C4C5 -]-C2C3C4C5 -l-C3C4C5 q- C3¢5 nu C2C4C5+

C2 -]-C3C 5 -}-C2 -_-C2C3C 4 + C2,

and

true + true + C2C 3 --{'-C2C3C4C 5 nt- C2C 3 -{'- C2C3C4C 5 -°r- C2C3C4C5-}-

C2C3C4C5 "{- C5 -[- C2C3C4C5 <_ Cl.

By writing these relations for all i -- 1, ... , 5, the resulting set of expressions can be simplified

to obtain one non-redundant relation:

ca <_ clc5 + c2c4.

This Type 2 precedence relation also specifies correctly and completely the set of feasible

assembly sequences for the example in Figure 2. It corresponds to our intuitive interpretation of

the precedence which requires that the connection between stick and receptacle be established

before the ends are connected.

Properties 1 and 2 are the necessary and sufficient conditions for the simplification of

Type 2 precedence relations. Property 1 asserts that shorter subsequences are not geometrically

blocked by the omission of connections. Property 2 asserts that longer sequences are not made

unstable by additional connections, and therefore that the feasibility of the resulting state is

guaranteed.. Violation of Property 1 generally requires the occurrence of mechanisms to establish

the interaction between connections. In the current experiments with precedence relations, we

have assumed that no such mechanisms are present. Violation of Property 2 generally requires

that unstable states be reachable through feasible operations. Figure 9 shows an example of

an assembly which does not satisfy Property 2 when gravity is present. In most of the current

experiments we have assumed no gravity and therefore stable subassemblies. Properties 1 and

r-
w

2O

r

m

L _

w

w

m

m

m

B G

A

Figure 8 Example of an assembly which violates Property 2, but not Property 1. In this assembly, the configuration

ABD is assumed stable, but ABDF is not stable. Therefore, we can execute the sequence of connections [A-B D-F]

and the sequence [A-B B-D D-E D-F], but not the sequence [A-B B-D D-F]. This violates Property 2 and does not

give correct Type 2 precedence relations of the simplified form. Note that this assembly has Property 1, and the

state ABDF would be identified as infeasible in the generation of Type 1 precedence relations which are correct.

2 hold for the examples that we are treating in the current experiments, but as shown by the

examples above, there are common cases where these properties may be violated,

Precedence relations provide an implicit representation of assembly sequences in the sense

that decisions regarding the next step in the sequence may be made through local consideration

of the current and previous states. On the other hand, an assembly sequence itself is an explicit

representation of the assembly sequence and if a new state is entered, an entire sequence must

be generated in order to guarantee its correctness. This distinction becomes important in the

implementation of assembly sequence plans in real-time execution. In this mode of operation

the choice of a next correct operation may be made without recourse to explicit planning of the

entire sequence. On the other hand, using the types of precedence relations we have defined there

is no guarantee that a next correct step is also going to be a step leading to a complete feasible

sequence. Therefore, we have defined a real-time property of assembly sequence representations

which requires that all feasible assembly subsequences which start at the initial state have a non-

empty set of following subsequences which reach the goal. In reference [14] we have described

algorithms which generate precedence relations which guarantee the real-time property to hold.

An example of an assembly in which the type 1 precedence relations do not provide the

real-time property is shown in Figure 10. In this case the extended algorithms are required in

order to generate a set of precedence relations guaranteeing the real time property.

5. Evaluation and Selection of Assembly Plans

The assembly planning algorithms described in previous sections generate the set of all

feasible assembly sequences. The formal definition of these structures and algorithms which

w

21

w

...._

I B

r--

r--
W

= :

Z :

==

= "

U

--±

= =

_------.----:

=

=
W

Figure 9 Example of an assembly which does not have the real-time property for Type 1 Precedence Relations. While B

and C can be inserted individually at any time, if B-C are connected early in the sequence, several additional

feasible steps may be taken, but do not lead to a feasible sequence. A doadend is reached when B-C trues to mate

with A-E-D. The real-time precedence relations for this example are generated by our extended algorithm [14].

incorporate feasibility predicates is a necessary step toward the development of techniques which

can be used to evaluate and select plans for particular applications. In this section we described

several approaches to the evaluation and selection of plans.

In practice we would like to select a set of candidate assembly plans which most nearly

meet our needs for a particular purpose. This selection requires the definition of evaluation

measures and the implementation of search techniques in order to select appropriate plans. This

evaluation and selection process would ideally occur in parallel with the generation of the plans

themselves. The combinatorial explosion in the number of possible sequences makes it desirable

to limit the search as early as possible and therefore to incorporate these evaluation measures

as early as possible into the search. In this section we will summarize results for three different

evaluation functions.

In practice, we would often like to choose assembly sequences which both minimize the

complexity of the task execution as well as the complexity of the fixturing and manipulation to

maintain the intermediate sub-assembly states. One possibility for such an evaluation function

is a weighted combination of the complexity of the assembly tasks and the relative degrees of

freedom of the parts in the intermediate sub-assemblies:

kD " D(n) if t = (n)

I/V1 (t) = { kD'D(n)+kc'C(h)+Wl(tl)+rvVl(t2)
if t = (n, h, tl, t2),

where

D(n) = measure of the relative degrees of freedom of the parts of the subassembly,

w

22

w

w

Z

m

=

q

=

TREE COST

A-B-C 11

B-A-C 13

B-C-A 13

C-B-A 11

D-A-C 15

D-C-A 14

C-D-A 14

E-C-A 15

E-A-C 14

A-E-C 14

Table 1 Table of costs using the weighted evaluation function discussed in the text for

the example in Figure 2. The preferred sequences were those which attached the cap or

handle to the receptacle first, providing a stable subassembly for insertion of the stick.

C(h) = measure of the complexity of the assembly task whose corresponding and-arc is h,

ko = weight given to the relative degrees of freedom of the parts of the subassembly, and

kc = weight given to task's complexity measure.

Sub-assemblies in which the number of relative degrees of freedom of the parts is high

are more difficult to manipulate because there are fewer orientations in which they are stabIe

and there are fewer options for grasping. A variety of factors can be included in a measure of

complexity of assembly tasks: time duration, reliability, fixture requirements, cost of resources.

As one example, we have established a ranking of assembly tasks based on threaded contacts,

cylindrical contacts, and planer contacts. Either exhaustive or heuristic search techniques may be

utilized to explore the alternative sequences relative to these evaluation functions. In this case,

an evaluation function W1 may be defined as an admissible heuristic function and incorporated

into a heuristic search technique such as the AO* algorithm. Based on these search techniques,

the resulting ranking of alternative sequences in terms of these evaluation functions are shown

in Table 1.

Another possible metric to assess the quality of an assembly sequence is the number of

distinct sequences in which the assembly tasks can be executed. For some applications it may

be desirable to have one fixed set of assembly tasks all of which are executed. Instead of

allowing all possibilities given by the AND/OR graph it may be preferred to allow only the

possibilities given by one assembly tree. The assembly tree that allows the maximum number

of distinct sequences is preferred because it gives more flexibility in the scheduling of tasks.

Given an assembly tree, the number of distinct sequences in which the assembly task can be

executed can be computed recursively. For this evaluation function an admissible heuristic can

23

w

w

also be found. The resulting evaluation of alternative assembly trees from Figure 2 suggests that

sequences D-C-A/C-D-A and E-A-C/A-E-C from Figure 3 each are represented by the same

solution tree for the assembly task while the other six assembly trees allow only one sequence.

A third possibility for a metric to assess the quality of an assembly tree is its depth. Assuming

that the assembly work station operates in cycles during which one or more assembly tasks are

executed, the depth of an assembly tree is given by the minimum number of cycles that are

required to complete the assembly. Given an assembly tree, the depth metric yields an admissible

heuristic function which can be implemented as an efficient search technique. For the example in

Figure 2, the assembly trees found using metric 2 above also have depth two since it is possible

to execute two assembly tasks simultaneously and therefore to complete the assembly in two

cycles. Of course, simultaneity of assembly tasks requires the availability of resources and this

metric would only be used if the required resources are available.

m

w

m

w

6. The PLEIDEAS System

While a fully automated assembly system is one goal of the techniques described here, many

of these approaches will be utilized first in an interactive mode where the user is a critic for

alternative assembly sequences generated automatically from CAD-based descriptions. The first

generation of such an interactive assembly planning environment integrates a set of software

modules for parts modeling, and planning. The system, which we call PLEIDEAS (PLanning

Environment for Integrated Design of Assembly Systems), has now been used to demonstrate

initial experiments in transferring a CAD-based parts description to a fully developed assembly

plan.

Figure 11 illustrates the elements of the PLEIDEAS system. They include:

CATIA - CATIA is a solid modeling and mechanical CAD design system available commer-

cially from IBM. CATIA uses both CSG and Boundary representations, and provides facilities

for Boolean operations on solid models of the parts. Several parts may be built in the same

model and viewed simultaneously as shown in Figure 12. However, there is no explicit repre-

sentation for assembly relationships in CATIA, and relative parts positions must be described in

order to represent assembly relationships. The partially assembled parts for the same example

are shown in Figure 12. For our purposes, CATIA provides a convenient tool for generating

and manipulating solid models of parts. It provides sufficient boundary model information to

generate many assembly relationships, and provides good capabilities for visualization of parts

and subassemblies. An additional advantage of the integration of this commercial system is the

availability of existing designs which have been implemented using CATIA and the opportunity

to interact more directly with practicing designers.

GEOS - GEOS [23,24] is a variational geometric modeling system under development at

Rensselaer by Professor Joshua Turner. It is intended for modeling parts and assemblies and

includes facilities to incorporate tolerance information. GEOS implements an object-oriented

environment, including classes and methods with inheritance. GEOS model data is organized

m

24

!

w

w

Relational Model of [Assembly

Model of Assembly

=

u

W

m

Figure 10 Overview of the PLEIDEAS environment for assembly sequence planning.

into data structures called objects or nodes. A GEOS display for the four-part example is shown

in Figure 12b. Typical GEOS nodes are point nodes, line nodes, and surface nodes. GEOS

nodes are grouped together into entities. Entities are the highest level of structure visible to the

user. There are three types of entities:

1. Menu entity -- contains all the menus used by the GEOS dialog manager,

2. Drawing entity -- corresponds to a paper drawing and contains a collection of 2D com-

ponents.

3. Space entity -- corresponds to a three-dimensional world and contains a collection of 3D

components.

In GEOS, the space entity can be used to model the assembly. Each space entity has a

list of region nodes, and region nodes contain body nodes. The body nodes can be used to

model the parts in the assembly. The two types of nodes used to model the geometric contacts

and mechanical attachment relationships between the parts are those defined previously in our

relational model (Section 2). A contact node models the contacts from the relational model

w

25

W
IIL II tlUlOll _I_TII II ¥IIlI_

conform o MIIII_ LINCl n[MOV(D

r,,l_Mt,clw_l....

i

w

r_

m

w

Figure 11 Example of the sequence of proce_res in the PLEIDEAS sysl_m. (a). Output

of the CATIA sysu_m showing the parts solid models. (b). GEOS display of object-orienu_d

model of assembly relations, (¢). AND/_)R graph output of the planning procedure.

and stores the pointers to the two body nodes, and the pointers to the contacting surfaces. An

attachment node includes the pointer to the agent nodes and the target nodes. In the current

mode of operation, GEOS imports parts models from CATIA and converts them directly to

GEOS representation. The assembly relationships are now input interactively.

26

w

= =

_=
i

m

=

m

Relational Model - The relational model which is used in the assembly planning software

modules is obtained by data format conversion from the GEOS C-environment to a LISP-

environment. The resulting symbolic relational model contains all of the relational and attribute

information needed for assembly sequence planning, including evaluation of feasibility predicates

for local geometric feasibility and attachments.

Assembly Sequence Planning - The assembly sequence planner utilizes the symbolic

representation of the relational model to generate the AND/OR graph representation of all feasible

assembly plans based on the evaluation of local geometric and attachment feasibility predicates.

The AND/OR graph for the four-part example is shown in Figure 12c. The explicit assembly

sequence lists, and the directed graph of assembly states can be generated from this representation.

Precedence Relations - Type 1 and Type 2 precedence relations are generated from the

AND/OR graph representation using implementations of the algorithms described in [14]. For

the four-part example in Figure 12, these are:

Type 1:

Cl "-'4 X3 " X4 C2 ---+ 371 • X3 C3 _ _2 " X4 C4 ----4 Xl • X2_

Type 2:

CI __ C2 " C3 -_C4 C2 __<_C1 " C4"_- C3 C3 __ Cl • C4 _- C2 C4 __ C2 " C3 _- Cl.

An additional example of the application of these planning tools is provided by the baH

point pen shown in Figure 13. This is an example which was used by both Bourjault [20] and

DeFazio and Whitney [21] in their work on interactive sequence planning. This example has

6 parts and 5 connections with a resulting 12 feasible sequences for assembly. The AND/OR

graph has 17 nodes, and the directed graph has 24 nodes. The precedence relations which are

generated for this example are:

Type 1:

C4 _ Xl " 272 C3 ---+X4 C1 --4 X5,

Type 2:

cl < c5 cs < c4 c4 < c2 + cl

where the Type 1 precedence relations are identical to those obtained from the interactive methods

in [21].

7. Conclusions

This paper summarizes work in progress on the development of a theoretical framework

and implementation of assembly sequence planning tools. The principal focus has been the

27

_2

CAP HEAD BODY TUBE INK BUTTON

i

m

w

n

I

Z

u

C=csp O-body H - head T=_b¢ l=Lnk U = burn

Figure 12 Bail-point pen example.

formalization of assembly sequence plan representations, the proof of equivalence of different

representations, and the implementation of algorithms to generate and transform these plan

representations. These representation tools and algorithms form the basis for implementation

into a system of software modules which provides an environment for interactive design and

evaluation of assembly system design alternatives.

There are a number of additions and extensions to the current system which are of both

theoretical and practical importance:

1. Feasibility predicates m Within the framework which we have described, a large number of

different resource independent and resource dependent feasibility predicates may be defined.

For practical application, we need to incorporate a global geometric feasibility algorithm.

m

28

W

w

w

w

There are several candidates here, but many existing algorithms which plan explicit paths

are too computationally intensive. An extended state stability criterion is also an important

extension, but again will require additional research.

2. Hierarchy _ Many assembly products are designed with natural hierarchies of subassemblies

in order to maintain the stability of subunits resulting in both functional and manufacturing

advantages. Such hierarchies fit naturally into the AND/OR graph framework and can be

used to simplify the search procedure by enforcing subgoals.

3. Uncertainty and Tolerances -- Assembly product designs have specified tolerances on the

dimensions and shapes of parts. These tolerances are usually matched to the functional

specification of the parts, and often reflect an implicit assumption by the designer about

assembly sequencing. Incorporation of tolerance information into feasibility predicates for

sequence plarming is an important extension to our current work. We expect this analysis

to lead to formal methods to incorporate other sources of uncertainty due to fixtures or

manipulators.

4. Mechanisms _ In our current analysis and experiments, we do not permit an assembly to

occur in more than one final state. In practice, many assemblies are complex mechanical

mechanisms whose function depends upon the occurrence of multiple states, and the assembly

sequence may depend upon the ability to aiter state during the assembly process. These

considerations fall within the framework which we have defined, but we have not attempted

to implement these considerations in detail.

5. Efficiency n The emphasis in this work has been in complete and correct representations

of all feasible assembly sequences. In practice, the combinatorial search of all possible

sequences is often prohibitive. We view this complete and correct specification as a necessary

precursor to more efficient decomposition and search techniques which are implemented in

a partial representation space. Our experiments with evaluation criteria discussed in Section

5 provide examples of heuristic search within the AND/OR graph space, without requiring

that the entire graph be generated.

6. Manipulation planning _ Implementation of an assembly system requires links between the

sequence planner and the manipulation planner or task-level programmer. There axe natural

extensions of the structure described here which incorporate feasibility tests on resource

dependent properties such as gripper geometry or force exerted. The detailed planning of

manipulation and fine-motion actions is outside the direct scope of this work, but will be

essential for automation of such systems. While each of these topics is a difficult research

topic in itself, the abstracted representation of manipulation capability must be present for

adequate planning of sequence based on resource dependent considerations.

7. Parts design -- We have emphasized the planning of feasible sequences given a specification

of parts and assembly relationships. Clearly parts redesign is one of the important links to

successful manufacturing systems. A PLEIDEAS type of planning environment would permit

the exploration of parts geometry and assembly modifications using the CATIA system, and

an opportunity to evaluate the impact of design changes on assembly plans.

29

n

J

2

w

Acknowledgements

This work has been supported by the New York State Center for Advanced Technology

in Automation and Robotics and the NASA Center for InteUigent Robotics Systems for Space

Exploration at Rensselaer Polytechnic Institute. Additional support has been received from the

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Brazil), The Jet Propulsion

Laboratory of the California Institute of Technology, and The Robotics Institute of Carnegie

Mellon University.

REFERENCES

1. Fikes, R., and N. Nilsson, "STRIPS: A New Application of Theorem Proving to Problem

Solving," Artificial Intelligence 2, pp. 189-208, 1972.

2. Sacerdoti, E.D., "Planning in a Hierarchy of Abstraction Spaces," Third International Joint

Conference on Artificial Intelligence, pp. 412-422, Stanford Research Institute Publications,

1973.

3. Wilkins, D., "Domain-independent Planning: Representation and Plan Generation," Artificial

Intelligence 22 PP. 269-301, 1984.

4. Chapman, D., "Planning for Conjunctive Goals," Artificial Intelligence 32 pp. 333-377,

1987.

5. Korf, R.E., " Planning as Search: A Quantitative Approach", Artificial Intelligence 33 pp.

65-88, 1987.

6. Homem de Mello, L. S., and A. C. Sanderson, "AND/OR Graph Representation of Assembly

Plans," Proc. of the Fifth National Conference on Artificial Intelligence AAM-86 pp. 1113-

1119, Morgan Kaufman, 1986.

7. Homem de Mello, L. S., and A. C. Sanderson, "Task Planning and Control Synthesis

for Flexible Assembly Systems," in Machine Intelligence and Knowledge Engineering for

Robotic Applications NATO ASI Series, Vol. F33, Ed. A.K.C.Wong and A.Pugh, Springer-

Verlag, Berlin, 1987.

8. Homem de Mello, L. S., and A. C. Sanderson, "Automatic Generation of Mechanical As-

sembly Sequences," Technical Report CMU-RI-TR-88-19, The Robotics Institute, Carnegie

Mellon University, December, 1988.

9. Homem de Mello, L. S., and A. C. Sanderson, "Precedence Relationship Representations

of Mechanical Assembly Sequences," in Proc. 2nd NASA Workshop on Space Telerobotics

Pasadena, CA, January, 1989.

10. Sanderson, A. C., and L. S. Homem de Mello, "Automatic generation of mechanical assembly

sequences,". In J. Turner, M. Wozny, and K. Preiss, eds, Proc. 1988 IFIP/NSF Workshop

on Geometric Modeling. Elsevier, 1989.

11. Homem de Mello, L. S., and A. C. Sanderson, "Representations of assembly sequences," In.

Proc. 11th International Joint Conference on Artificial Intelligence, Morgan Kaufman, 1989.

12. Homem de MeUo, L. S., and A. C. Sanderson, "A Correct and Complete Algorithm for

the Generation of Mechanical Assembly Sequences," IEEE Transactions on Robotics and

Automation, in press, 1989.

30

w

L

u

13. Homem de MeUo, L. S., Task Sequence Planning for Robotic Assembly, PhD Dissertation,

Electrical and Computer Engineering Department, Carnegie Mellon University, May, 1989.

14. H. Zhang, " Generation of Precedence Relations for Mechanical Assemblies," Master's

Thesis, Rensselaer Polytechnic Institute, August, 1989.

15. L. I. Lieberman and M. A. Wesley, "AUTOPASS: An automatic programming system for

computer comxolled mechanical assembly," IBM Journal of Research and Development,

21(4):321-333, July, 1977.

16. C. M. Eastman, "The design of assemblies," SAE Technical Paper Series, Society of

Automotive Engineers, 1981.

17. K. Lee and D. C. Gossard, "A hierarchical data structure for representing assemblies: Part

1.," CAD 17(1):15-19, Jan/Feb, 1985.

18. Lozano-Perez, T., and M. Wesley, "An Algorithm for Planning Collision-Free Paths Among

Polyhedral Obstacles," Comm. ACM 22 pp. 560-570, 1979.

19. Bonenschanscher, N., "Subassembly stability," In Proc. ofAAAI-88, pp 780-785, Morgan

Kaufman, August, 1988.

20. Bourjault, A., Contribution a une Approche Methodologique de L'Assemblage Automatise:

Elaboration Automatique des Sequences Operatoires, These d'Etat, Universite de Franche-

Comte, Besancon, France, November, 1984.

21. DeFazio, T. L., and D. E. Whitney, "Simplified Generation of All Mechanical Assembly

Sequences", IEEE Journal of Robotics and Automation RA-3(6), pp. 640-658, December,

1987. See Corrections, same journal RA-4(6), pp. 705-708, December, 1988.

22. M. M. Lui, "Generation and evaluation of mechanical assembly sequences using the liaison-

sequence method," Master's Thesis, MIT, May, 1988.

23. J. Turner, "GETS design notes," Rensselaer Design Research Center, Rensselaer Polytechnic

Institute, February, 1989.

24. J. Turner, "GETS user notes," Rensselaer Design Research Center, Rensselaer Polytechnic

Institute, February, 1989.

31

